
Sample Question Paper

Mathematics

Class - 10+2

		Class -	- 10+2			
Time Allowed : 3 Hours				Maximum Mar	ks : 80	
<u>Instructions</u> :						
1) All questions are compulsory.						
Question paper consists of 18 questions divided into 4 sections A, B, C and D.						
Section A comprises of 1 question of 20 multiple choice type questions of 1 mark each.						
4) Section B comprises of 7 questions of 2 marks each.						
5) Section C comprises of 7 questions of 4 marks each.						
6) Section D comprises of 3 questions of 6 marks each.						
7) An internal choice is provided in 3 questions of Section C and D each. You have to attempt only one of						
the alternatives in all such cases.						
	8) Use of calculator is not allowed.					
Section – A						
Q1	Choose the correct options in the following questions:					
	(i) Relation $R = \{(x, y) : x < y^2 \text{ where } x, y \in \mathbb{R} \} \text{ is}$					
	(a)Reflexive but not symmetric	•	(b)Symmetric and transitive but not Reflexive 1			
	(c)Reflexive and Symmetric		(d)Neither reflexive nor symmetric nor transitive		-	
(ii)	Range of function \cos^{-1} is :					
` ,	(-)	$b)(0,\pi)$	$(c)\left(-\frac{\pi}{2},\frac{\pi}{2}\right)-\{0\}$	(d) $[0,\pi]$	1	
/···· \	(=)	$\mathbf{b}_{\mathbf{j}}(0,\mathbf{n})$	$(0)\left(-\frac{2}{2},\frac{2}{2}\right)$	$(\mathbf{u})[\mathbf{u}, \mathbf{n}]$		
(iii)	Principal value of $\sin^{-1}\left(\frac{1}{2}\right)$ is					
		b) $\frac{\pi}{3}$	(c) $\frac{\pi}{4}$	(d) $\frac{\pi}{6}$	1	
(iv)	If A is a square matrix of orde			` ' 6		
(10)		(b) 125	(c)5	(d)10	1	
(v)			(6)3	(u)10		
(*)	If $\begin{bmatrix} x-2y & 0 \\ 5 & x \end{bmatrix} = \begin{bmatrix} -5 & 0 \\ 5 & 3 \end{bmatrix}$, the	hen $oldsymbol{y}$ is equal to:-			1	
	(a)1	(b)3	(c)2	(d)4		
(vi)	If the order of the matrix A is 3×2 then the order of the matrix $(A')'$ is :				1	
	$(a)2\times 3 \qquad \qquad ($	(b) 3×2	(c) 2×2	(d) 3×3		
(vii)	(vii) $(x \in \mathcal{L}(x)) = (\frac{\sin 8x}{5}, x \neq 0)$					
	If $f(x) = \begin{cases} \frac{\sin 8x}{5x}, & x \neq 0 \\ m+1, & x=0 \end{cases}$ is continuous at $x=0$ then value of m is					
		•	$(c)\frac{3}{c}$	(d) ⁵	1	
	$(a)^{\frac{5}{8}}$	$(b)\frac{8}{5}$	(C) _ 5	$(d)\frac{5}{3}$		
(VIII)	If $y = e^{\log x}$ then $\frac{dy}{dx}$ is					
	(a) $\log x - x$ ($(b)xe^{\log x}$	(c)1	$(d)e^{\log x}\log x$	_	
(ix)	If $y = \tan x$ then, at $x = \frac{\pi}{4}$,		. ,			
	-		4.10	4.0.4	1	
	` '	$(b)\sqrt{2}$	(c)2	(d)4		
(x)	Radius of a circle is increasing				1	
		b)2 m/s	(c) $2\pi m/s$	(d)4 m/s		
(xi)	$\int_{\pi/6}^{\pi/3} \frac{\sqrt{\cos x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx \text{ is equal}$	to				
		$b)\frac{\pi}{6}$	$(c)\frac{\pi}{12}$	$(d)\frac{\pi}{2}$	1	
/::\		6 6	12	(u) ₂		
(xii)	$\int_0^1 \frac{dx}{1+x^2}$ is equal to:				1	
	$(a)^{\frac{\pi}{2}}$ ($b)\frac{\pi}{4}$	$(c)\frac{\pi}{2}$	$(d)\frac{\pi}{6}$	_	
(xiii)	Order of differential equation	d^2y dy	5 O :	b		
ν/					1	
_		b) 2	(c)1	(d)0		
(xiv)	If \vec{a} is a non-zero vector then	•			1	
	$(a) \vec{a} $ (I	b) $ \overrightarrow{a} ^2$	(c)1	(d)0		

Solve: $x \log x \frac{dy}{dx} + y = \frac{2}{x} \log x$. Q14 4

4

4

4

2

4

2

6

Solve: $x^2 dy - (3x^2 + xy + y^2) dx = 0$; given that y = 1 when x = 1.

Bag I contains 7 red and 5 white balls. Bag II contains 3 red and 4 white balls. A bag is selected at random Q15 and a ball is drawn from it. Detect that which ball has more chances of being drawn red or white?

A laboratory blood test is 99% effective in detecting a certain disease when it is in fact present. However, the test also yields a false positive result for 0.5% of the healthy person tested (i.e. if a healthy person is tested, then, with the probability 0.005, the test will imply he has the disease). If 0.1% of the population actually has the disease, what is the probability that a person has the disease given that his test result is positive?

Section - D

Q16 Ajay, Sameer and Meenal have Rs.20/- each and some footballs, basketballs and volleyballs in their 6 shops. In a week, Ajay sold 3 footballs and a volleyball but he bought 2 basketballs for his shop and he has Rs.35/- now. In same duration, Sameer sold 2 basketballs and 2 volleyballs but he bought a football for his shop and he has Rs. 95/- now. Similarly, Meenal sold 2 footballs and a basketball but she bought 3 volleyballs for her shop and she has Rs.15/- now. Find the cost of a football, a basketball and a volleyball by the help of matrices.

(a) 3

Express $\begin{bmatrix} 5 & 1 \\ 3 & 7 \end{bmatrix}$ as the sum of a symmetric matrix and a skew-symmetric matrix. If $A = \begin{bmatrix} 3 & 2 \\ 4 & 7 \end{bmatrix}$ and $f(x) = x^2 - 10x + 13$ then show that f(A) = 0 and using this result find A^{-1} . (b) 3

Q17(a) Prove that for any two non-zero vectors \vec{a} and \vec{b} , $|\vec{a} + \vec{b}| \le |\vec{a}| + |\vec{b}|$. Also write the name of this 4

Adjacent sides of a parallelogram are given by $6\hat{i}-\hat{j}+5\hat{k}$ and $\hat{i}+5\hat{j}-2\hat{k}$. Find the area of (b) parallelogram.

(a) Find the shortest distance between the following pairs of lines:

 $\vec{r} = \vec{i} - 4\vec{j} + 5\vec{k} + \mu \left(5\vec{i} + 9\vec{j} + \vec{k}\right) \& \vec{r} = 2\vec{i} + 8\vec{j} - 6\vec{k} + \lambda \left(3\vec{i} - 2\vec{j} + \vec{k}\right)$

(b) Find the angle between the lines $\vec{r} = 3i + 8j + 3k + \mu \begin{pmatrix} \wedge & \wedge & \wedge \\ i + 2j - k \end{pmatrix} \& \vec{r} = -3i + 9j - k + \lambda \begin{pmatrix} \wedge & \wedge & \wedge \\ 5i + 3j + 4k \end{pmatrix}$

Find the height of the right circular cone of maximum volume, which is inscribed in a sphere of radius Q18 6 12cm.

OR

Evaluate $\int \frac{x^2}{x^4+1} dx$