Sample Paper 10+2 Mathematics (For DA Students)

	Time : 3 Hours		Maximum Marks : 80
Instru	 Section A contains Q1 to Q26(objective t Section B contains Q27 to Q34 of 3 marks Section C contains Q35 to Q42 of 4 marks All questions of Section A are compulsor Attempt any 4 questions out of 8 question 	ype questions) of 2 marks s each. s each. y. Attempt any 4 question ons in Section C.	each. s out of 8 questions in Section B.
		Section A	
Q1	Choose a correct option from the given op Let $R = \{(a, b): a = b - 2, b > 6\}$ be a relation	ptions from Q1 to Q7 : on defined on the set \mathbb{N} of	natural numbers, then 2
Q2	(a) $(2,4) \in R$ (b) $(3,8) \in R$ The function $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = 2x - (x)$	(c) $(6,8) \in R$ 5 is	(d) $(8,7) \in R$ 2
Q3	(a)one-one only (b)onto only Principal value of $\sin^{-1}\left(\frac{-1}{2}\right)$ is	(c) $-\pi$	(d)not onto 2
Q4	If $y = \sin^{-1}(x)$ then x belongs to the interva	(c)- <u>3</u> :	(u) <u>3</u>
Q5	(a) $(0,\pi)$ (b) $(-1,1)$ (c) $[-1,1]$ (d) If order of matrix A is 2 × 3 and order of matri	$[0, \pi]$ x <i>B</i> is 3 × 5 then order of	matrix B'A' is : 2
Q6	(a) 5×2 (b) 2×5 If $\begin{vmatrix} x & 1 \\ 1 & x \end{vmatrix} = \begin{vmatrix} 2 & 0 \\ 8 & 4 \end{vmatrix}$ then value of x is :	(c) 5 × 3	(d) 3 × 2 2
Q7	(a) 3 (b) 2 (c) 4 If $\begin{bmatrix} 2x + y & 0 \\ 5 & x \end{bmatrix} = \begin{bmatrix} 5 & 0 \\ 5 & 3 \end{bmatrix}$, then y is equal to:- (a) 1 (b) 3 (c) 2	(d)8 (d)-1	2
Q8	Match the columns from Q8 to Q13 : Col. A (a) $A + A'$ (b) $A - A'$	(i)Alw (ii)Syr (iii)Ske	Col. B2vays a null Matrixnmetric Matrixew-Symmetric Matrix
Q9	Col. A (a) $f(x) = e^{x}$ (b) $f(x) = \frac{1}{x}$	(i)Co (ii)Ide (iii)Dis	Col. B2ntinuous functionntity functionscontinuous function
Q10	Col. A (a) $\frac{d}{dx}(\sin x)$	(i)tar	Col. B 2
	(b) $\frac{d}{dx}(\cos x)$	(ii)co (iii)—	s x sin x
Q11	Col. A (a) $f(x) = -x$ (b) $f(x) = e^x$	(i)Str (ii)Str (iii)Cc	Col. B2ictly increasing functionictly decreasing functiononstant function
Q12	Col. A (a) $f''(a) < 0$ (b) $f''(a) > 0$	(i) <i>x</i> = (ii) <i>x</i> = (iii) <i>x</i>	Col. B2= a is point of minima= a is point of maxima= a is a point of inflexion
Q13	Col. A (a) $\int dx$ (b) $\int \cos x dx$	(i)—s (ii)x ⊣ (iii)sii	Col. B 2 $\sin x + c$ - c $\sin x + c$

Fill in the blanks from Q14 to Q20 from the the following options :

$$-2, \quad \sqrt{426}, \quad \frac{1}{2}, \quad \int_{1}^{4} x^2 dx , \quad 4 \int_{0}^{3} \sqrt{9 - x^2} dx , \quad 2, \quad e^{2x}, \quad 5, \ \tan x \bigg\}$$

Q14	$\int_{a}^{1} x dx = $	2			
Q15	Area of the region bounded between parabola $y = x^2$ and lines $x = 1$, $x = 4$ in the first quadrant is	2			
	given by the integral				
Q16	Area of the circle $x^2 + y^2 = 9$ is given by the integral	2			
Q17	Order of the differential equation $\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^3 + y = 0$ is	2			
Q18	Integrating factor of the differential equation $\frac{dy}{dx} + 2y = \cos x$ is	2			
Q19	If $\vec{a} = \hat{\imath} - 2\hat{\jmath} + \hat{k}$ and $\vec{b} = 3\hat{\imath} + 2\hat{\jmath} - \hat{k}$ then $\vec{a} \cdot \vec{b} =$	2			
Q20	If $\vec{a} = 5\hat{\imath} - \hat{\jmath} + 3\hat{k}$ and $\vec{b} = 3\hat{\imath} + \hat{\jmath} - 2\hat{k}$ then $ \vec{a} \times \vec{b} =$	2			
	State as True or False from Q21 to Q26.				
Q21	Direction ratios of x -axis are $< 0,1,1 > .$	2			
QZZ	$\frac{1}{3} = \frac{3}{2} = \frac{1}{5}$ is the vector form of equation of line.	2			
Q23	Subject to the constraints $x + y \le 3$, $x \ge 0$, $y \ge 0$ maximum value of $Z = 2x + y$ is 6.	2			
Q24	Subject to the constraints $x + y \le 5$, $x \ge 0$, $y \ge 0$ maximum value of $z = x + 2y$ is 5. If $P(A) = 0.3$ then $P(\overline{A}) = 0.6$	2			
Q26	If $P(A) = 0.5$, $P(A \cap B) = 0.2$ then $P(B / A) = 0.4$	2			
	Section B				
	This section contains 8 questions of 3 marks each. Attempt any 4 questions out of these questions .				
Q27	Find the value of $4 \tan^{-1}(1) - \cos^{-1}\left(-\frac{1}{2}\right)$	3			
Q28	Form a matrix $A = [a_{ij}]$ of order 2×2 where $a_{ij} = i + j$.	3			
Q29	If $y = \cos 2x - \sin 5x$ then find $\frac{dy}{dx}$.	3			
Q30	Evaluate $\int_0^1 \frac{dx}{1+x^2}$.	3			
Q31	Find the area of the region bounded by the parabola $y^2 = x$ lines $x = 0$, $x = 3$ and $x - axis$ in the first quadrant.	3			
Q32	If $\vec{a} = 3\hat{\imath} - \hat{\jmath} + \hat{k}$ and $\vec{b} = 5\hat{\imath} + \hat{\jmath} - 7\hat{k}$ then find $ \vec{a} \times \vec{b} $.	3			
Q33	Find the vector and cartesian equation of the line which passes through the points $(3, -2, -4)$ and $(5, -7, 8)$.	3			
Q34	If $P(A) = \frac{6}{11}$, $P(B) = \frac{5}{11}$ and $P(A \cup B) = \frac{7}{11}$ then find $P(A \cap B)$.	3			
	Section C				
	This section contains 8 questions of 4 marks each. Attempt any 4 questions out of these questions .				
Q35	Give two examples each of : (i) row matrix	4			
020	(ii) square matrix				
Q36	while the formula of differentiation using : (i)Product Rule (ii)Quotient Rule	4			
Q37	Give one example each of an increasing function and a decreasing function.	4			
038	Find the area bounded by ellipse $\frac{x^2}{x^2} + \frac{y^2}{y^2} - 1$	4			

Q38 Find the area bounded by ellipse $\frac{x^2}{9} + \frac{y^2}{16} = 1$

Q39 Formulate the integral to find the area bounded by the circle $x^2 + y^2 = 25$ in the first quadrant. Q40 Give one example each of (i)Homogenous differential equation (ii)First order linear differential equation

4

4

4

Q41 Shade the feasible region in the given figure subject to the constraints $5x + 3y \le 15$, $3x + 5y \le 15$, $x \ge 0$, $y \ge 0$. Also maximize Z = 8x + 16y for this graph.

Q42 Two balls are drawn at random with replacement from a box containing 10 black balls and 8 red balls. 4 Find the probability that one of them is black and other is red.