Sample Paper
 $10+2$
 Mathematics (For DA Students)

Time : 3 Hours

Instructions:

1. Section A contains Q1 to Q26(objective type questions) of 2 marks each.
2. Section B contains Q27 to Q34 of 3 marks each.
3. Section C contains Q35 to Q42 of 4 marks each.
4. All questions of Section A are compulsory. Attempt any 4 questions out of 8 questions in Section B. Attempt any 4 questions out of 8 questions in Section C.

Section A

Choose a correct option from the given options from Q1 to Q7 :
Q1 Let $R=\{(a, b): a=b-2, b>6\}$ be a relation defined on the set \mathbb{N} of natural numbers, then
(a) $(2,4) \in R$
(b) $(3,8) \in R$
(c) $(6,8) \in R$
(d) $(8,7) \in R$
(a)one-one only
(b)onto only
(c)one-one and onto
(d) not onto

Q3 Principal value of $\sin ^{-1}\left(\frac{-1}{2}\right)$ is
(a) $\frac{-\pi}{6}$
(b) $\frac{\pi}{6}$
(c) $\frac{-\pi}{3}$
(d) $\frac{\pi}{3}$

Q4 If $y=\sin ^{-1}(x)$ then x belongs to the interval :
(a) $(0, \pi)$
(b) $(-1,1)$
(c) $[-1,1]$
(d) $[0, \pi]$

Q5 If order of matrix A is 2×3 and order of matrix B is 3×5 then order of matrix $B^{\prime} A^{\prime}$ is :
(a) 5×2
(b) 2×5
(c) 5×3
(d) 3×2

Q6 If $\left|\begin{array}{ll}x & 1 \\ 1 & x\end{array}\right|=\left|\begin{array}{ll}2 & 0 \\ 8 & 4\end{array}\right|$ then value of x is :
(a) 3
(b) 2
(c) 4
(d) 8

Q7 If $\left[\begin{array}{cc}2 x+y & 0 \\ 5 & x\end{array}\right]=\left[\begin{array}{ll}5 & 0 \\ 5 & 3\end{array}\right]$, then y is equal to:-
(a) 1
(b) 3
(c) 2
(d) -1

Match the columns from Q8 to Q13 :

Col. A

(a) $A+A^{\prime}$
(b) $A-A^{\prime}$

Q9

Q10

Col. A

(a) $f(x)=e^{x}$
(b) $f(x)=\frac{1}{x}$

Col. A

(a) $\frac{d}{d x}(\sin x)$
(b) $\frac{d}{d x}(\cos x)$

Col. A
(a) $f(x)=-x$
(b) $f(x)=e^{x}$

Col. A

(a) $f^{\prime \prime}(a)<0$
(b) $f^{\prime \prime}(a)>0$

Col. A
(a) $\int d x$
(b) $\int \cos x d x$

Col. B

(i)Always a null Matrix
(ii)Symmetric Matrix
(iii)Skew-Symmetric Matrix

Col. B

(i)Continuous function
(ii)Identity function
(iii)Discontinuous function

Col. B
2
(i) $\tan x$
(ii) $\cos x$
(iii) $-\sin x$

Col. B
2
(i)Strictly increasing function
(ii)Strictly decreasing function
(iii)Constant function

Col. B

2
(i) $x=a$ is point of minima
(ii) $x=a$ is point of maxima
(iii) $x=a$ is a point of inflexion

Col. B
(i) $-\sin x+c$
(ii) $x+c$
(iii) $\sin x+c$

Fill in the blanks from Q14 to Q20 from the the following options :
$\{-2, \quad \sqrt{426}$,
$4 \int_{0}^{3} \sqrt{9-x^{2}} d x$
$\left.2, \quad e^{2 x}, \quad 5, \tan x\right\}$

Q14
$\int_{0}^{1} x d x=$ \qquad
Q15 Area of the region bounded between parabola $y=x^{2}$ and lines $x=1, x=4$ in the first quadrant is 2 given by the integral \qquad Area of the circle $x^{2}+y^{2}=9$ is given by the integral \qquad Q17 Order of the differential equation $\frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{3}+y=0$ is 2
\qquad
Q18 Integrating factor of the differential equation $\frac{d y}{d x}+2 y=\cos x$ is \qquad
If $\vec{a}=\hat{\imath}-2 \hat{\jmath}+\hat{k}$ and $\vec{b}=3 \hat{\imath}+2 \hat{\jmath}-\hat{k}$ then $\vec{a} \cdot \vec{b}=$ \qquad 2

Q20 If $\vec{a}=5 \hat{\imath}-\hat{\jmath}+3 \hat{k}$ and $\vec{b}=3 \hat{\imath}+\hat{\jmath}-2 \hat{k}$ then $|\vec{a} \times \vec{b}|=$ \qquad 2

State as True or False from Q21 to Q26.
Q22 $\frac{x-2}{3}=\frac{y+7}{2}=\frac{z-9}{5}$ is the vector form of equation of line.
Q23 Subject to the constraints $x+y \leq 3, x \geq 0, y \geq 0$ maximum value of $Z=2 x+y$ is 6 .
Q24 Subject to the constraints $x+y \leq 5, x \geq 0, y \geq 0$ maximum value of $Z=x+2 y$ is 5 .
Q25 If $P(A)=0.3$ then $P(\bar{A})=0.6$.
Q26
If $P(A)=0.5, P(A \cap B)=0.2$ then $P(B / A)=0.4$

Section B

This section contains 8 questions of $\mathbf{3}$ marks each.Attempt any 4 questions out of these questions.
Q27 Find the value of $4 \tan ^{-1}(1)-\cos ^{-1}\left(-\frac{1}{2}\right)$
3
Q28 Form a matrix $A=\left[a_{i j}\right]$ of order 2×2 where $a_{i j}=i+j$.
Q29 If $y=\cos 2 x-\sin 5 x$ then find $\frac{d y}{d x}$.
Q30 Evaluate $\int_{0}^{1} \frac{d x}{1+x^{2}}$.
3

Q31 Find the area of the region bounded by the parabola $y^{2}=x$ lines $x=0, x=3$ and x - axis in the first quadrant.
Q32 If $\vec{a}=3 \hat{\imath}-\hat{\jmath}+\hat{k}$ and $\vec{b}=5 \hat{\imath}+\hat{\jmath}-7 \hat{k}$ then find $|\vec{a} \times \vec{b}|$.
Q33 Find the vector and cartesian equation of the line which passes through the points $(3,-2,-4)$ and $(5,-7,8)$.
Q34 If $P(A)=\frac{6}{11}, P(B)=\frac{5}{11}$ and $P(A \cup B)=\frac{7}{11}$ then find $P(A \cap B)$.

Section C

This section contains 8 questions of 4 marks each.Attempt any 4 questions out of these questions.
Q35 Give two examples each of : (i) row matrix
4
(ii) square matrix

Q36 Write the formula of differentiation using :
4
(i)Product Rule (ii)Quotient Rule

Q37 Give one example each of an increasing function and a decreasing function. 4
Q38 Find the area bounded by ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$
4
Q39 Formulate the integral to find the area bounded by the circle $x^{2}+y^{2}=25$ in the first quadrant.
4
Q40 Give one example each of (i)Homogenous differential equation
(ii)First order linear differential equation

Q41 Shade the feasible region in the given figure 4
subject to the constraints
$5 x+3 y \leq 15,3 x+5 y \leq 15, \quad x \geq 0, y \geq 0$.
Also maximize $Z=8 x+16 y$ for this graph.

Q42 Two balls are drawn at random with replacement from a box containing 10 black balls and 8 red balls. Find the probability that one of them is black and other is red.

